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1. INTRODUCTION

Survival data (or more broadly, time to response data) often has censored

values. If censoring is independent of the response, then methods to analyze

the data are well known and documented. The product limit (Kaplan Meier)

estimator can be used for a rionparametric approach; the Cox proportional hazard

model yields what is sometimes called a semiparametric analysis and, of course,

parametric techniques also exist. Cf. for example: Cox and Oakes (1984),

Lawless (1982), and Kalbfleisch and Prentice (1980).

Slud and Byar (1988) point out that for many biomedical experiments the

assumption of independence is reasonable. This is especlally true in clinical

trials where the mechanism of loss to follow-up is end of study censoring and

there is no systematic pattern of patient entry into the study over time.

For other situations, Slud and Byar (1988) emphasize that the assumption of

independence may not be plausible and for many commonly occurring problems, even

independence conditional on known covariates does not hold. It is, therefore,

imperative to develop methods of modeling and analyzing such situations.

One impediment to development of such approaches is the nonidentifiability

of dependence between censoring and response (see Tsiatis (1975)). That is,

without making some assumptions, it is impossible to determine from the data

alone whether or not the censoring time and response time are independent.

Klein and Moeschberger (1988) used a particular dependence structure to

obtain bounds on the marginal survival. Slud and Rubinstein (1983) and Peterson

(1976) have developed other bounds under dependent censoring. See Moeschberget

and Klein (1984), Basu and Klein (1982) and David and Moeschberger (1978) for

more on dependent censoring (competing risks).

A particular type of dependent censoring defined as response linked (RL)

censoring will now be introduced and modoled. R1. censoring iz censoring caused
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by occurrence of the response or the fact that the response is about to occur.

For instance, consider a heroin addiction rehabilitation study where the

response is a relapse to heroin addiction. It may be the case that some

subjects restarting heroin usage also stop going to the clinic for chemical

testing and hence become censored. RL censoring may also be generated by other

unknown (or unmeasurable) factors which cause both the response and censoring to

be linked. E.g., such a factor could be an ineffective counselor at the clinic

causing the subject to both leave the study and relapse to addiction.

As another example, consider a wildlife study on animals that have been

radio tagged. E.g., see Pollock et al (1988a), and Pollock, Winterstein, aid

Conroy (1988b). A particular bird (duck or bobwhite) is followed until the time

it is known to die (the radio signal remains in one location) or is censored

(the radio is destroyed or the signal is unreceivable). The bird could be

destroyed along with the radio due to a predator or some other cause. This

would be a RL censoring with the unobserved death occurring at or near the time

of censoring. Another animal's radio receiver might simply malfunction (from a

manufacturing flaw) to result in what would be an independent censoring.

RL censoring occurs (possibly together with jidependent censoring) in a

variety of settings. For example, programs to , smoking (cocaine, crack,

etc); studies of methods to reduce the time between violent behaviors for high

security prisoners (e.g., furlough versus lockdown); clinical trials on humans

(e.g., use of prescribed contraceptives); etc.

Sometimes a censoring will be known to be independent, e.g., the end of

study censoring mentioned earlier. Such cases of knovn independent censorings

will be referred to by (E). Often it will be impossible to distinguish between

RL and independent censoring. Censorings which cannot be classified as RL or

independent will be referred to as unknown censoring (U). These (U) censorings
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will include both (RL) and nondistinguishable independent (NI) censorings.

Responses will be noted by (R).

In the next section, a parametric model will be developed that incorporates

these dual components of the unknown censorings to develop parametric estimates.

2. THE RESPONSE LINKED CENSORING MODEL

For notational purposes, let j =1,..., n denote observations while:

Z= (ZjI1 Zj2"" Zjk) is a vector of information from k covariates.

R is the time of response. The probability density function (pdf) and
cumulative density function (cdf) of time to R., may depend on the
covariates and are denoted to by f(t. JZ.) and 3 F(tj Z) respectively.

J -j .=j
ti is 1 if the response would be observed at the R. and 0 otherwise. For

any observation P(tj j - 1) is P and is independeat of Z.

N. is the time of NI censoring. The time to N. is independent of the
covariates. The pdf and cdf of this time a~e referred to by h(tj) and
H(t.) respectively.

E. is the time of E censoring. It does not matter if the time to E. is
3 dependent on the covariates. The pdf and cdf of this time are

referred to by g(tj) and G(t.) respectively.

Rip ", Ej and NjIZ are independent of each other and of Ri , "i , Ei and N i IZ i

for any i, j.

For simplicity, it has been assumed that any RL censoring is observed at

the time of death. While this won't always be true (i.e., a wounded animal

could survive 2 weeks after its radio was destroyed in an attack), any error

this assumption introduces will likely be small compared to the error inherent

in identifying the exact time of response. See Section 5 for suggestions about

allowing for a more general RL censoring process. It also has been assumed that

the probability of an otherwise uncensored response being RL censored is (1-P)

regardless of the time of response or value of covariates. To assume otherwise
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would vastly complicate the model.

[B The investigator will not observe (R , Nj, Ej, Z.) but rather will only

see (Ti, CJ, Z ) where

T is the time of occurrence for first event which is min (R , E, N.).

C. is the censor status of the first event which by convention is

3 if that event is an E censoring

2 if that event is a U censoring (i.e., either the first event is R
and 5 is 0 or the first event is NI)

1 if that event is a non RL censored response (i.e., must be 1

and the first event is R).

Note that in the event of ties, an E censoring (usually caused by end of study)

would be observed before a U censoring and any type of censoring would be

observed before a response.

In terms of f, F, g, G, h, H, P and Z. the likelihood function for all

observed value of (T., C.) is:

(*) [P • f(tjlj i) (1 - H(.tji)) (1 - G(tj))] ×
R observed

H [(l-P) • f(tjlZ ) (l-H(tj)) (1-G(tj))

U observed
+ h(t) (1-F(t i Zj) (1-G(tj))M x

Ebg(tj (1-F(tjlZ ) (1-H(t.))]
E observed

The U censorings consist of two components (RL censorings and NI

censorings) that without any assumptions are indistinguishable from each other.

The assumption of independence between NI censorings and the covariates makes it

somewhat possible to separate these components. This assumption means that the

relation between time and covariates for the NI component of observed U

censorings will be opposite of the relationship between covariates and time in

observed deaths. This is because the NI component will not be observed if the

response occurs first. The relationship between covariates and time for the RL
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component of observed U censorings should be the same as the relationship

between response and time for observed responses. In Section 3, the likelihood

representation in (*) will be used to estimate the contribution of RL components

to the U censoring.

The importance of the assumption of independence between covariates and NI

censoring cannot be overlooked because it implies that any relationship between

the time of U censoring and the covariates which is in the same direction as the

relationship between the tim? of response and the covariates is being caused by

RL censoring. Sometimes this assumption may be appropriate and other times not.

Fo[Br instance, consider a cancer survival study where outcome is death by

cancer and the U censoring is death from other causes (which may or may not be

attributable to the cancer.) If the covariate is age, then it is natural that

older individuals are more likely to die sooner of cancer and of other causes

(independently of cancer) than are younger individuals. If, however, the

covariate is severity of initial diagnosis of cancer, it seems reasonable that

any association between this and early time of "other causes" death is due to

either misdiagnosis or the cancer itself otherwise contributing to the death.

Therefore, an important strategy in RL analysis would be selection of

covariates that have little or no logical association with NI censoring. If one

is uncertain of association of covariates with NI censoring then they should

analyze the data both allowing and not allowing for RL censoring and compare the

results of each analysis. In Section 3 it is shown how to do such analysis in a

parametric setting.

3. ANALYSIS OF RL CENSORING IN A PARAMETRIC SETTING

Parametric modeling of response time has often proven helpful in medicine

and biology. For example, the Gompertz and Makeham, distributions have a long

rich history (going back to the 1800's) in modeling lifelengths. See Cox and
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Oakes (1984) and Gross and Clarke (1975) with their related references to these

and other parametric models such as the Weibull and exponential. These authors

also give advice on picking the appropriate parametric model. Miller (1983) and

Efron (1988) point out that a parametric approach to modeling survival time is

often more efficient compared to nonparametric approaches. Competing risks

(censored data) has been modeled parametrically. Cf. Moeschberger and Klein

(1984), Basu and Klein (1982), and David and Moeschberger (1978).

Let o be the vector of parameters associated with F and @ be the vector of

parameters associated with H. Then the log likelihood function is

1 = l In(P) + ln(f(t.jlZ.,ce) + ln(l-H(tj j) + ln(l-G(t))
R observed

+ Z ln[(1-P) f(t. JZjY) (1-H(tj 1@)) +
U observed -

h(t.j I) (l-F(tj JZct))] + ln(l-G(tj))

+ Z ln(g(t.i )) + ln(l-F(tjZ,ct)) + ln(l-H(t, e))
E observed in-J t

The parameters of 1 are P, a and '. Provided that the likelihood function

satisfies the assumptions on page 409 of Lehman (1983) then standard likelihood

analysis, methods such as those in Miller (1982), may be used to derive

estimates and test hypothesis of the parameters. Note that g and G are

independent of the parameters and hence will drop out of any maximization of 1.

An important hypothesis pair concerns the existence of RL censoring. The

null hypothesis of no RL censoring is H0 :P=1 and the alternative of some RL

censoring is the one sided H :P < 1. Let 1 be the maximum likelihood with P =a w

1 and 12 be the maximum likelihood with P unrestricted and be the value of P

producing this unrestricted maximum likelihood. It follows from the asymptotic

theory in Miller (1981), that if H0 is true, then

211 - lw] will have an approximate distribution and that
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(-1)I > 1J2(l - 1v)] - N(0,1) where I is the ztandard indicator function

of the set. Thus a test of H0 vs. HA with approximate size a is given by:

eject H0 if p < 1 and 42(l - 1 ) > Z( 1 E)

o not reject H0 otherwise

In Section 4 hypothesis testing of RL censoring and parameter estimates in

the presence and absence of RL censoring will be illustrated.

4. EXAMPLES

Models using RL censoring are applied to three examples from the

literature; on the Stanford heart transplant data, on rehabilitated duck

survival data, and en lung cancer data. References and details are given below.

In each of these examples, the U censoring time seems to be consistent with an

exponential model. For simplicity, Z will here always consist of only one

covariate thus be denoted Z. Note that F(t. JZ,a) and H(tjl ) will have the

following forms:

-tj et[cf+ lZjJ

F(tj IZ,ct) - 1-e for -- < ob, a, <

-tj 0

H(tj I@) = 1-e for -- < 00 < '

Compare Kalbfleisch and Prentice (1980) for similar forms.

It will be appropriate to use standard maximum likelihood analysis (see

Miller (1981) and Lehman (1983)) with the above F and H in the parametric RL

model.

Example One: Stanford Heart Transplant Data

The Stanford heart transplant data set in Miller (1981) has 69 patients.

The patient deaths were classified into two groups: Heart rejection (considered
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the response) and nonrejection (considered U censoring here). Many of the

patients were alive (E censoring) at the time the data set was compiled. Except

for the first two weeks following transplant, which had an abundance of

nonrejection deaths, the times of response and U censoring appear consistent

with an exponential model. The covariate was mismatch score between heart donor

and recipient tissues. Miller (1981) examined several approaches each of which

found higher mismatch scores to be associated with earlier rejection deaths.

One would not expect mismatch scores to be associated with nonrejection deaths

(U censoring) unless either the death types were misclassified or heart

rejection contributed to the nonrejection deaths.

Elimination of individuals that died or were censored within two weeks of

transplant and/or did not have mismatch scores reduced the sample to 57

individuals (28 of which died from rejection deaths and 7 of whom died from

nonrejection deaths). Exponential models all)wing for RL censoring and excluding

RL censoring (P constrained to 1) were fitted to survival time in fraction of

years beyond 14 days. Table I gives the results.

Table -

RL Censoring and Stanford Heart Transplant Data

Parameter with RL without RL
Estimates Censoring Censoring

2.42 2.27

-1.41 -1.22

00 2.49 2.09

P 0.085 1

log likelihood (1) 70.54 71.55
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Using the likelihood ratio test for H0 :P=1 vs. H a:P < 1 would reject H0 for

the a error less than or equal to 0.0775. Including RL censoring lowered the

estimate of the covariate coefficient () from -1.41 to -1.22 thus increasing

the magnitude of the effect from higher mismatch scores on earlier deaths. It

should be mentioned that after incorporation of more patients and follow up in

the heart transplant data, Miller and Halperin (1982) decided to combine

together the rejection and nonrejection deaths due to difficulties and

arbitrariness in making the distinction between them.

Example Two: Rehabilitated Duck Survival

Fifty radio tagged released female black ducks were followed until

censoring or natural death (Pollock et al (1988b)). Of these birds, 8 died

naturally, 10 were shot by hunters (U censored) and the rest were end of study

censored. Exponential models are used to model released animal survival time,

e.g., Trent and Rongstad (1974). Pollock et al assumed random censoring in

showing that a covariate, condition index, was statistically related to survival

time.

It might be possible that some of the 10 birds shot were already in bad

shape and would have died from natural causes soon. (The poor condition making

the birds easier to be hunted.) This idea was tested by fitting a mixed

exponential likelihood model to the data. The MLE for was negative. This

implies that any relationship between condition index and hunter censoring was

opposite to the relationship between condition index and survival; and thus,

shooting deaths are not RL censoring.

Example Three: Lung Cancer Survival

Prentice (1973) fits an exponential model to survival times of 40 lung

patients (37 died during the study, 3 were end of study censored and there was



no U censoring). A covariate called performance status was strongly related to

survival time.

Here, three simulation studies to test the efficacy of the mixed censoring

model on data where the U censoring is known to be entirely RL were done with

this data. The simulations involved fitting mixed censoring and all independent

censoring models to 50 replications of each of the following alterations: (i) 5

randomly chosen responses changed to U censorings. (ii) 9 randomly chosen

responses changed to U censorings. (iii) 18 randomly chosen responses changed

to U censorings. (This simulation approach is analogous to Zippin and Armitage

(1966).) Note that for the above data sets created in (i), (ii) and (iii), all.

of the U censorings will actually be RL censorings.

Table II summarizes the ability of the mixed model to detect the RL

censoring in the simulation studies. In all three studies, was positive in

over 80% of the replications. The likelihood ratio test for P=O was usually

statistically significant at a - 0.05 in case (i), at a = 0.01 in case (ii), and

at a - 0.001 in case (iii). This is in spite of the small sample size of 40

observations.

Table III examines to what degree incorporation of RL censoring in the

mixed model improves the estimation of coefficient of the covariate performance

status. The coefficient of this covariate in the exponential model fitted to

the unaltered lung cancer data set was B1 = 0.0600. The coefficients in the

simulation models are 2xamined in terms of how close '.iey are to 0.0600 (closer

means superior).

Te all independent censoring model seldom (always less than 20%) produced

superior estimates BI than did the mixed model for any of the replications in

(i), (ii) and (iii). The mixed model gave superior estimates of B1 in over 60%

of the replicates in each of the simulation studies. In case (iii) the mixed

model estimate of B1 was superior to the independent model estimate in 98% of



the replicates. The mixed model estimated B1 to be 0.0600 (the value of B1 for

unaltered data set) in 60% to 80% of the replicates, compared to never for the

independent censoring model. The mixed model Bl's had mean absolute deviations

from 0.0600 which were 40% to 80% smaller than those of the corresponding

independent censoring models.

The mean absolute deviations from 0.0600 of the coefficients estimated by

the mixed model stayed between .0015 and .0020 and did not appear to be related

to the number of observations randomly censored. On the other hand, the mean

absolute deviations from 0.0600 of the coefficients estimated by the independent

models were almost directly proportional to the number of observations randomly

censored growing from .00338 for 5 random censorings to .00932 for 18 random

censorings. Still with 18/37 or close to 50% of the non RL censored

observations randomly censored, the ratio of the mean absolute deviation to the

unaltered sample coefficient value was only .00932/.0600 = .20.
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Table II

Mixed Model vs. Independent Model

Detecting the RL Censoring

[Likelihood ratio test of HO: p = 0 values]

Number Percent of LR

of Responses P-value < .50

Randomly Percent of LR Percent of LR Percent of LR (same as

Censored P-values < .001 P-values < .01 P-values < .05 , > 0)

5 10% 38% 66% 82%
9 18% 58% 76% 92%

18 82% 96% 100% 100%

Table III

Comparing the Mixed and Independent Model

Estimates for Coefficient of the Covariate

Performance Status

Number of Percent Independent Percent Mixed Percent Mixed 'ean Absolute

Responses Model Estimate Model Estimate Model Estimate Difference from

Randomly was closer to was closer to was same as naltered Data Estimate

Censored Unaltered Data Unaltered Data Unaltered Data Bt 0.0600 1

Value Value Value Mixed Model Independent

Estimate Model Estimate

5 14% 66% 62% 0.00182 0.00338
9 16% 76% 70% 0.00208 0.00546

18 2Z 98% 88% 0.00154 0.00932

5. CONCLUSIONS

In the examples above, we have illustrated the usefulness of RL modeling

and given tests for the existence of RL censoring. The RL models can estimate

regression parameters, etc. regardless of RL censoring occurring (or not).

These techniques help protect an applied researcher from misanalyzing data (or
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provide an additional objective assurance that independence censoring is

reasonable).

The response linked censoring model of Section 2 can be generalized.

Consider the RL censoring being observed at time R. - c. instead of at the time
3 3

of the response. The c. can be either a constant or a random variable. RecallJ

from Section 2, the example where an animal is attacked, resulting in the radio

being destroyed (i.e., at time R - c ) with the animal dying later (at time Pj;

the c. was 2 weeks)..3

For the use of the c 's being constants a likelihood very similar to (*)

can be written in a straightforward fashion. Indeed, for e -+ 0+ this

generalized likelihood reduces to (*). Note that this suggests when the C.'s

are close to 0, we could use (*).

In the case of the s.'s being random variables, it is possible to write an

analogous likelihood using convolution results. The c.'s can be assumed
.3

independent of the Rj's to make this more tractable. Essentially, the pdf of Rj

- c. is calculated and used to represent the likelihood contribution of such

observations. Note that it is helpful to pick a pdf model for c 's such that

the pdf of R. - ej can be a simpler, closed form expression.

Another approach is to use R y instead of R. - cj as the RL censoring

time, where y is a constant (0 < y. 1 1) or a random variable. The pdf of

Rjy. is used similar to the pdf of R. - c. It should be noted that a still

more general approach is to simply use a conditional pdf class given an R..
.3

This paper has focused on the helpfulness of testing for RL censoring and

also modeling under it. We agree with others that many important situations exist

where independent censoring is the only censoring type. It is important, however,

to model the difficult cases of response linked censoring that also occur. The

techniques presented here allow for a better understanding of RL censoring.
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